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Abstract Soil moisture can be estimated at coarse resolutions (>1 km) using satellite remote sensing,
but that resolution is poorly suited for many applications. The Equilibrium Moisture from Topography,
Vegetation, and Soil (EMT1VS) model downscales coarse-resolution soil moisture using fine-resolution
topographic, vegetation, and soil data to produce fine-resolution (10–30 m) estimates of soil moisture. The
EMT1VS model performs well at catchments with low topographic relief (�124 m), but it has not been
applied to regions with larger ranges of elevation. Large relief can produce substantial variations in
precipitation and potential evapotranspiration (PET), which might affect the fine-resolution patterns of soil
moisture. In this research, simple methods to downscale temporal average precipitation and PET are
developed and included in the EMT1VS model, and the effects of spatial variations in these variables on
the surface soil moisture estimates are investigated. The methods are tested against ground truth data at
the 239 km2 Reynolds Creek watershed in southern Idaho, which has 1145 m of relief. The precipitation and
PET downscaling methods are able to capture the main features in the spatial patterns of both variables.
The space-time Nash-Sutcliffe coefficients of efficiency of the fine-resolution soil moisture estimates
improve from 0.33 to 0.36 and 0.41 when the precipitation and PET downscaling methods are included,
respectively. PET downscaling provides a larger improvement in the soil moisture estimates than
precipitation downscaling likely because the PET pattern is more persistent through time, and thus more
predictable, than the precipitation pattern.

1. Introduction

Volumetric soil water content (soil moisture) plays a central role in earth surface processes and connects the
atmospheric, geomorphic, hydrologic, and biologic sciences [Legates et al., 2011]. It is a principal variable in
many watershed-scale processes including soil erosion [Singh and Thompson, 2016], crop yield [Green and
Erskine, 2004], land-atmosphere interaction [Entekhabi et al., 1996; Pal and Eltahir, 2001], and runoff genera-
tion [Western et al., 2001; Castillo et al., 2003; Ruggenthaler et al., 2015]. Thus, reliable soil moisture data at
watershed scales would benefit many applications that are impacted by these processes.

Satellite remote sensing methods allow monitoring of soil moisture over suitably large spatial extents. Such
methods include the Advanced Scatterometer (ASCAT) [Figa-Saldana et al., 2002], the Advanced Microwave
Scanning Radiometer E (AMSR-E) [Njoku et al., 2003], WindSat [Li et al., 2010], and the more recent NASA Soil
Moisture Active and Passive (SMAP) [Entekhabi et al., 2010]. However, these satellites provide soil moisture
values at resolutions ranging from 5 to 60 km. Most watershed-scale applications require much finer-
resolution soil moisture (10–30 m), so downscaling is needed.

Many soil moisture downscaling methods have been proposed, and they vary in formulation and in the sup-
plemental data that they use to infer fine-scale variations of soil moisture. Some downscaling methods have
been designed to use optical/thermal or radar backscatter data that are commonly available from satellite

Key Points:
� Simple elevation-based downscaling

methods for average precipitation
and potential evapotranspiration are
proposed
� Much of the spatial variability in

average precipitation and PET is
captured for the Reynolds Creek
watershed
� Spatial variations in precipitation and

PET affect soil moisture patterns and
improve soil moisture downscaling

Correspondence to:
J. D. Niemann,
jniemann@engr.colostate.edu

Citation:
Cowley, G. S., J. D. Niemann,
T. R. Green, M. S. Seyfried, A. S. Jones,
and P. J. Grazaitis (2017), Impacts of
precipitation and potential
evapotranspiration patterns on
downscaling soil moisture in regions
with large topographic relief, Water
Resour. Res., 53, 1553–1574,
doi:10.1002/2016WR019907.

Received 7 OCT 2016

Accepted 21 JAN 2017

Accepted article online 27 JAN 2017

Published online 21 FEB 2017

VC 2017. American Geophysical Union.

All Rights Reserved.

COWLEY ET AL. DOWNSCALING SOIL MOISTURE 1553

Water Resources Research

PUBLICATIONS

http://dx.doi.org/10.1002/2016WR019907
http://orcid.org/0000-0002-3938-0958
http://orcid.org/0000-0002-2988-0879
http://orcid.org/0000-0002-1441-8008
http://orcid.org/0000-0002-0995-4957
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-7973/
http://publications.agu.org/


observation systems [Chauhan et al., 2003; Merlin et al., 2005; Merlin et al., 2006; Das et al., 2014; Song et al.,
2014; Peng et al., 2016]. These methods typically produce soil moisture estimates with resolutions of 1 km
or larger due to the resolution of the ancillary data they use. For example, Peng et al. [2016] proposed a soil
moisture downscaling method based on land surface temperature (LST) and the vegetation temperature
condition index to produce soil moisture at a resolution of 5.6 km. This approach requires a relatively flat
region because it assumes that variations in surface temperature are caused by evaporative cooling rather
than variations in elevation. Other downscaling methods use statistical relationships and interpolation tech-
niques [Crow et al., 2000; Kim and Barros, 2002; Kaheil et al., 2008; Mascaro et al., 2010]. These methods pri-
marily focused on the statistical properties of fine-scale soil moisture and how they can be empirically
estimated from ancillary data.

Another class of downscaling methods use topographic and vegetation data because these variables have
been shown to be related to fine-scale soil moisture variations [Western et al., 1999; Gomez-Plaza et al., 2001;
Brocca et al., 2007; Traff et al., 2015]. These downscaling methods often reach 10–30 m resolutions, but they
typically have been applied to small catchments with low topographic relief. Wilson et al. [2005] developed
an empirical downscaling technique that uses fine-scale topographic attributes such as elevation, specific
contributing area, slope, wetness index, potential solar radiation index (PSRI), lowness, and a multiresolution
valley bottom flatness index. The method was applied to catchments with less than 80 m of topographic
relief. Pellenq et al. [2003] developed a method to disaggregate soil moisture based on fine-scale topogra-
phy and soil depth using a modification of TOPMODEL [Beven and Kirkby, 1979]. They also applied the
downscaling method to a catchment with low relief (27 m). Temimi et al. [2010] proposed a downscaling
method that combines TOPMODEL’s wetness index with remotely sensed vegetation data and applied it to
a very large region with about 85 m of topographic relief, but the effects of elevation on soil moisture were
not considered. Ranney et al. [2015] used a water balance approach called the Equilibrium Moisture from
Topography, Vegetation and Soil (EMT1VS) model to downscale soil moisture. The model uses fractional
vegetation cover along with slope, curvature, specific contributing area, and PSRI to infer the fine-scale var-
iations in soil moisture. Application of the EMT1VS model has also been limited to catchments with low
topographic relief (�124 m).

In a large watershed or region (e.g., a 5–60 km soil moisture grid cell from a satellite product), elevation can
vary greatly, which might produce spatial variations in soil moisture due to spatial variations in climate. In
particular, elevation is known to affect spatial patterns of precipitation, and many studies have developed
methods to interpolate precipitation using elevation data [Chua and Bras, 1982; Hevesi et al., 1992; Phillips
et al., 1992; Garen et al., 1994; Lloyd, 2005]. Kyriakidis et al. [2001] showed how spatial patterns of precipita-
tion are related to atmospheric and terrain characteristics such as elevation, specific humidity, and wind
speed. Geostatistical kriging methods that use elevation as a secondary variable have been shown to pro-
duce better estimations of annual and monthly rainfall [Goovaerts, 2000] as well as daily rainfall [Ly et al.,
2011] than deterministic methods that do not incorporate elevation. The orographic relationship between
elevation and precipitation can also be affected by other topographic attributes. Hanson [1982] and Garen
et al. [1994] found that the relationship between elevation and precipitation differs for opposing sides of
the Reynolds Creek watershed. Spreen [1947] found that precipitation in Colorado is correlated with eleva-
tion, slope, exposure, and aspect. Elevation alone explains 30% of the total variance in precipitation, and
the four attributes together explain 88% of the variance. Daly et al. [1994] and Prudhomme and Reed [1999]
incorporated topographic factors such as orientation categories to capture windward and leeward effects
on precipitation patterns.

Elevation can also affect air temperature [Leemans and Cramer, 1991; Willmott and Matsuura, 1995; Dodson
and Marks, 1997; Sun and Zhang, 2016], which impacts the spatial distribution of potential evapotranspira-
tion (PET), evapotranspiration (ET), and possibly soil moisture. Shevenell [1999] demonstrated that pan evap-
oration decreases approximately linearly with elevation in the arid climate of Nevada. Vanderlinden et al.
[2008] found a similar relationship between elevation and reference crop ET for the mountainous region of
Andalusia, Spain. They found that estimation of annual reference crop ET improves significantly when eleva-
tion data are used. Monthly PET also has a strong inverse relationship with elevation in the mountainous
Lhasa River basin in China [Shi et al., 2014].

The dependence of precipitation and PET (or temperature) on elevation has been suggested to impact soil
moisture variability. Seyfried [1998] observed that soil moisture generally increases with elevation in the

Water Resources Research 10.1002/2016WR019907

COWLEY ET AL. DOWNSCALING SOIL MOISTURE 1554



Reynolds Creek watershed, and Seyfried et al. [2011] further investigated the climatic variations related to
elevation that impact the soil moisture trends. Jawson and Niemann [2006] investigated soil moisture pat-
terns in Oklahoma over varying spatial extents using an empirical orthogonal function (EOF) analysis. They
found that elevation is typically among the most important characteristics in determining soil moisture pat-
terns. Qiu et al. [2014] performed a similar EOF analysis in China and found that watershed-scale soil mois-
ture patterns are most strongly correlated to topographic attributes such as elevation and slope.

The objective of this paper is to investigate the influence of orographic precipitation and PET patterns on
soil moisture downscaling in regions with large topographic relief. New precipitation and PET downscaling
methods are proposed and evaluated using rain gauge and weather station data from the mountainous
Reynolds Creek watershed. The two downscaling methods are then added to the EMT1VS model to evalu-
ate how elevation-dependent precipitation and PET affect the fine-scale estimates of soil moisture. The
EMT1VS model is used because it has the strongest physical basis among available topographic downscal-
ing methods. For example, it has been shown to reproduce both valley-dependent and hillslope-dependent
soil moisture patterns, and it can reproduce temporally unstable soil moisture patterns [Coleman and Nie-
mann, 2013]. The model also outperforms a purely statistical downscaling method when calibration data
are limited [Werbylo and Niemann, 2014], suggesting that the process conceptualizations help constrain the
model to more realistic behavior.

2. Methodology

2.1. Preexisting Model Components
Ranney et al. [2015] provides a detailed explanation and derivation of the EMT1VS model, but an overview
of the preexisting model components is provided here. The EMT1VS model considers the water balance of
the hydrologically active layer, which is defined as the depth of soil through which lateral flow can occur.
Ultimately, the soil moisture is calculated by assuming equilibrium between the inflows and outflows for
this layer. The soil moisture that is being downscaled is expected to vary in time, which ultimately produces
temporal variability in the fine-scale soil moisture output. However, any direct dependence on time is
neglected in the model when inferring the spatial variations for downscaling. Four processes are simulated
in the water balance: infiltration F, deep drainage G, lateral flow L, and ET E.

Infiltration F (mm/d) is described using a simple linear function that accounts for interception by vegetation
cover

F5 F0 12kVð Þ; (1)

where F0 (mm/d) is a spatially constant reference precipitation rate, which is typically considered the tem-
poral average precipitation for the application region. The term in parentheses represents the throughfall.
The parameter k represents the interception efficiency of the vegetation cover, and V is the fractional vege-
tation cover, which is assumed to be known at the fine resolution.

Deep drainage G (mm/d) is described using Darcy’s Law, a percolation assumption, and the Campbell [1974]
equation for unsaturated hydraulic conductivity. It is written

G5Ks;v
h
/

� �cv

; (2)

where Ks;v (mm/d) is the vertical saturated hydraulic conductivity, h is the volumetric water content in the
modeled layer, / is the soil porosity, and cv is the vertical pore disconnectedness index.

Lateral flow L (m2 mm/d) is modeled using Darcy’s law, a soil depth that depends on topographic curvature,
the Campbell [1974] equation for unsaturated hydraulic conductivity, and the assumption that the hydraulic
gradient is a power function of topographic slope. The resulting expression is

L5d0
jmin 2j

jmin

� �
ciKs;v

h
/

� �ch

Se; (3)

where d0 (m) is the thickness of the hydrologically active layer at locations where topographic curvature is
zero, jmin is the minimum topographic curvature for which the hydrologically active layer is present, j is
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the topographic curvature from the fine-resolution digital elevation model (DEM), c (m) is the length of the
DEM grid cell (which is also the resolution of the final soil moisture estimates), i is the anisotropy of saturat-
ed hydraulic conductivity, ch is the horizontal pore disconnectedness index, S is the topographic slope from
the DEM, and e is a parameter that relates the horizontal hydraulic gradient to topographic slope.

The equation for ET E (mm/d) uses the Priestly and Taylor [1972] assumption and power functions to
describe the effects of limited moisture on the ET rate. It includes shading effects and allows root-water
uptake from other (nonmodeled) soil layers. It is written

E5Ep gV1 12Vð Þl½ � Ip

11a
h
/

� �br

1
a

11a
h
/

� �ba

" #
; (4)

where Ep (mm/d) is the temporal average PET, g is the portion of transpiration that is contributed by the
hydrologically active layer, l accounts for shading effects on soil evaporation, a is the Priestly-Taylor coeffi-
cient minus one, and br and ba characterize the moisture limitation effect in the radiative and aerodynamic
terms of E, respectively. Ip is the PSRI from the fine-resolution DEM.

2.2. Precipitation Downscaling
The precipitation downscaling method aims to replace the spatially constant temporal average precipita-
tion F0 with a simple model that allows for spatial variations in this variable. The downscaling method is
based on four assumptions about the relationship between the precipitation and topography. First, spatial
variations in precipitation are assumed to depend linearly on elevation. Linear dependence has been
observed and implemented by numerous previous studies [Chua and Bras, 1982; Daly et al., 1994; Garen
et al., 1994; Goovaerts, 2000; Castro et al., 2014]. Second, spatial variations in precipitation are also
assumed to depend linearly on topographic aspect with respect to wind direction (referred to as topo-
graphic orientation for simplicity) as observed/implemented by Basist et al. [1994], Kyriakidis et al. [2001],
Guan et al. [2005], and Franke et al. [2008]. Third, the dependences on elevation and orientation are
assumed to interact as observed by Hanson [1982]. Fourth, the spatial scale at which these relationships
are strongest is assumed to be larger than typical DEM resolutions. Previous studies have evaluated
precipitation-topography relationships at varying spatial resolutions [Thornton et al., 1997; Foresti and
Pozdnoukhov, 2012]. For example, Thornton et al. [1997] found that elevation data at resolutions between
2 and 8 km produce the strongest relationships with precipitation. Similarly, the Precipitation-elevation
Regression on Independent Slopes Model (PRISM) describes the topography using a 6 km by 9 km resolu-
tion [Daly et al., 1994].

Using these four assumptions, a heuristic precipitation downscaling method can be written as

P5�P
11s Z#2�Z #

� �� �
11n S#cos R#2m

� �
2S#cos R#2m

� �h in o
11sn Z#S#cos R#2m

� �
2�Z #S#cos R#2m

� �� 	 ; (5)

where P (mm/d) is the local precipitation, �P (mm/d) is the spatial average precipitation, s (1/m) is a parame-
ter that controls the elevation dependence, n is a parameter that controls the orientation dependence, and
m is a reference direction from which all topographic orientations are calculated. The parameter m is
expected to be related to the prevailing wind direction. The variables Z# (m), S#, and R# are the average ele-
vation, slope, and aspect within a square neighborhood around the grid cell of interest. Note that average
aspect must be calculated by determining the arctangent of the ratio between the sums of the sines and
cosines of the aspects within the neighborhood. The spatial extent of the neighborhood is the spatial scale
at which orographic precipitation effects occur (i.e., the 2–8 km scale found by Thornton et al. [1997]). For
simplicity, we refer to these variables as the orographic elevation, slope, and aspect. The overbars in equa-
tion (5) indicate spatial averages of the attributes and attribute combinations over the entire downscaling
region (e.g., the watershed or a coarse-resolution grid cell).

The first term in the numerator of equation (5) represents the linear dependence of precipitation on eleva-
tion. The second term in the numerator describes the linear dependence on orientation. The orographic
slope S# is included in the second term because the orientation is expected to have a greater effect on pre-
cipitation if the surface has a larger slope, which is similar to what was done by Basist et al. [1994]. The
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multiplication of the two terms in the numerator allows the two topographic dependencies to interact. The
denominator is simply a constant that ensures that the supplied spatial average precipitation �P is preserved
after downscaling for any given collection of orographic elevations, slopes, and aspects.

The downscaled precipitation can be included in the EMT1VS model by replacing the reference precipita-
tion F0 in equation (1). The modified infiltration term becomes

F5�P
11s Z#2�Z #

� �� �
11n S#cos R#2m

� �
2S#cos R#2m

� �h in o
11sn Z#S#cos R#2m

� �
2�Z #S#cos R#2m

� �h i 12 kVð Þ: (6)

The mathematical implications of this change to the model will be described in section 2.4.

2.3. PET Downscaling
The PET downscaling method begins by assuming that the temporal average PET depends linearly on air
temperature, similar to the Blaney-Criddle equation [Blaney and Criddle, 1950], which has been shown to
provide comparable results to other PET methods [Oudin et al., 2005]. Specifically, the Blaney-Criddle equa-
tion can be written

Ep5K�
1

T1K�
2
; (7)

where K�
1

and K�
2

are empirical coefficients that depend in part on the relative number of daylight hours
and thus are expected to vary between different regions [Doorenbos and Pruitt, 1977]. Because daylight
hours are not tracked in the EMT1VS model, the two coefficients are instead assumed to be linear functions
of spatial average PET E p as follows:

K�
1
5K1�E p; (8)

K�2 5K2�E p; (9)

where K1 and K2 are two parameters. This assumption is similar to the approaches of Ekstr€om et al. [2007]
and Sperna Weiland et al. [2012] who modified the Blaney-Criddle equation so that the coefficients could
vary spatially to account for climate variability.

Within the troposphere, ambient air temperature varies approximately linearly with altitude according to

T5Tr2wZ; (10)

where Tr (8C) is the temperature at sea level, w (8C/m) is the environmental or ambient lapse rate, and Z (m)
is altitude. According to Bras [1990], the ambient lapse rate is typically between 5 and 88C/km. Neutral or
average temperature gradients have been suggested to be about 68C/km [Dodson and Marks, 1997], and
Rolland [2003] found an average of about 5.68C/km for the mountainous region of northern Italy. If we
assume that the dependence of air temperature on altitude also describes the dependence of surface air
temperature on elevation (similar to Leemans and Cramer [1991]), then equations (7) and (10) can be com-
bined as

Ep

�E p
5K1 Tr2wZð Þ1K2; (11)

where Z now represents topographic elevation. Calculating the spatial average of this equation within the
downscaling region, one gets

�E p

�E p
5

1
Ac

ð
K1Tr dAc2

1
Ac

ð
K1wZdAc1

1
Ac

ð
K2dAc; (12)

where Ac (m2) is the area of the region. For simplicity, we assume that Tr , w, K1, and K2 are spatially constant
within the downscaling region, so we get

11K1w�Z5K1Tr1K2; (13)

where �Z (m) is the average elevation in the region. Also, equation (11) can be rearranged as

Water Resources Research 10.1002/2016WR019907

COWLEY ET AL. DOWNSCALING SOIL MOISTURE 1557



Ep

�E p
1K1wZ5K1Tr1K2: (14)

Combining equations (13) and (14) and solving for Ep, one gets

Ep5�E p1�E pK1w �Z2Zð Þ: (15)

This equation provides a simple way to downscale the spatial average PET using fine-scale variations in ele-
vation. Because K1 and w appear together in the equation and are both unknown parameters, they can be
combined into a single parameter x (1/m). Together, x and �E p control the dependence of PET on elevation.
Equation (15) can be incorporated into the EMT1VS model by substituting for Ep in equation (4), which
becomes

E5E p 11x Z2Z
� �� �

gV1 12Vð Þl½ � Ip

11a
h
/

� �br

1
a

11a
h
/

� �ba

" #
: (16)

The first bracketed term now allows the local PET to vary with elevation.

2.4. Resulting Soil Moisture Equation
Coleman and Niemann [2013] and Ranney et al. [2015] developed and tested a solution to the water
balance equation by which local soil moisture can be calculated from a known spatial average soil
moisture. In this method, explicit analytical solutions for soil moisture are first obtained by assuming
that each outflow term in the water balance dominates for the date when downscaling is performed.
Then, the final soil moisture estimate is calculated by a weighted average of the analytical solutions,
where the weights are found from the magnitudes of the outflow terms in the water balance equation
(equations (2), (3), and (16)). The same approach is used for the model when precipitation and PET
downscaling are included, which produces the following estimate of the local or fine-scale soil
moisture:

h5
wGhG1wLhL1wRhR1wAhA

wG1wL1wR1wA
; (17)

where hG, hL , hR, and hA are the explicit soil moisture estimates if deep drainage, lateral flow, radiative ET,
and aerodynamic ET dominate, respectively, and wG, wL, wR, and wA are associated weights. The equations
for hG, hL, hR, and hA are

hG5�h
DDI

DDI
; (18)

hL5�h
LFI

LFI
; (19)

hR5�h
REI

REI
; (20)

hA5�h
AEI

AEI
; (21)

where �h is the known spatial average soil moisture, DDI is the deep drainage index, LFI is the lateral flow
index, REI is the radiative ET index, and AEI is the aerodynamic ET index. The quantities DDI, LFI, REI, and
AEI are the spatial averages of the indices. The weights are

wG5
�h

DDI

� �cv

; (22)

wL5
�h

LFI

� �ch

; (23)

wR5
�h

REI

� �br

; (24)
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wA5
�h

AEI

� �ba

: (25)

Using the generalized infiltration and ET models (equations (6) and(16)) and following the solution method
provided by Coleman and Niemann [2013] and Ranney et al. [2015], the indices can be calculated as follows:

DDI � /
11s Z#2�Z #

� �� �1=cv 11n S#cos R#2m
� �

2S#cos R#2m
� �h in o1=cv

11sn Z#S#cos R#2m
� �

2�Z #S#cos R#2m
� �h in o1=cv

12kV
Ks;v

� �1=cv

; (26)

LFI � /
11s Z#2�Z #

� �� �1=ch 11n S#cos R#2m
� �

2S#cos R#2m
� �h in o1=ch

11sn Z#S#cos R#2m
� �

2�Z #S#cos R#2m
� �h in o1=ch

12kV
d0iKs;v

� �1=ch A
cSe

� �1=ch jmin

jmin 2j

� �1=ch

;

(27)

REI � /
11s Z#2�Z #

� �� �1=br 11n S#cos R#2m
� �

2S#cos R#2m
� �h in o1=br

11sn Z#S#cos R#2m
� �

2�Z #S#cos R#2m
� �h in o1=br

11a
�E p 11x �Z2Zð Þ½ �


 �1=br 1
Ip

� �1=br 12kVð Þ
gV1ð12VÞl
� 
1=br

(28)

AEI � /
11s Z#2�Z #

� �� �1=ba 11n S#cos R#2m
� �

2S#cos R#2m
� �h in o1=ba

11sn Z#S#cos R#2m
� �

2�Z #S#cos R#2m
� �h in o1=ba

11a

a�E p 11x �Z2Zð Þ½ �


 �1=ba 12kV
gV1ð12VÞl
� 
1=ba

:

(29)

These indices produce the spatial variations in the fine-scale soil moisture pattern. In the original EMT1VS
model, those variations were produced by fine-scale variations in fractional vegetation cover V , slope S, cur-
vature j, PSRI Ip, and contributing area A. Now, they also depend on fine-scale variations in elevation Z and
orographic elevation Z#, slope S#, and aspect R#. Z only appears in the REI and AEI because only those indi-
ces depend on the PET, but Z#, S#, and R# appear in all four indices because these variables are associated
with the input of water into the soil layer. The four soil moisture estimates hG, hL, hR, and hA are constant in
time, but the four weights wG, wL, wR, and wA can vary because the supplied spatial average soil moisture �h
can change temporally.

The EMT1VS model has several features that contrast with conventional watershed models. It calculates
the fine-resolution soil moisture from an explicit equation and directly accepts �h as an input. It also requires
no time step, no initial or preceding fine-resolution soil moisture pattern, and no time series of meteorologi-
cal forcing data. This structure makes the model very computationally efficient and allows it to be applied
to large regions at fine spatial resolutions. However, these benefits occur in part due to the equilibrium
assumption, which means the EMT1VS model cannot capture any fine-scale features that are related to
nonequilibrium conditions or hysteresis. The model also does not account for errors in the supplied �h data.

3. Data Sets and Model Application

3.1. Data Sets Used for Model Evaluation
The precipitation and PET downscaling methods and the revised EMT1VS model are evaluated at the Reyn-
olds Creek watershed, which is located in the Owyhee Mountains in southwestern Idaho [Seyfried et al.,
2001]. The watershed has an area of 239 km2 and 1145 m of relief (elevations range from 1100 to 2245 m).
The annual average precipitation varies from about 230 mm at lower elevations to 1100 mm at higher ele-
vations [Hanson, 2001], and average class A pan evaporation is about 1044 mm [Hanson, 1989]. Reynolds
Creek is well-suited for this study because it has an extensive hydrologic monitoring network including rain
gauges, weather stations, and soil moisture sensors. Furthermore, the stations are positioned to capture the
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spatial variability of precipitation, PET, and soil moisture within the watershed. The data are all publicly avail-
able at ftp.nwrc.ars.usda.gov.

The rain gauge network includes 22 stations (Figure 1a) and data were available for 2012 through 2014.
Each station has dual-gauged precipitation amounts at hourly time steps, which were then aggregated to
obtain the average precipitation (total precipitation divided by total time including any interstorm periods)
at each station. These precipitation values are expressed as rates (mm/d) throughout the study to be consis-
tent with their use in the EMT1VS model.

The weather station network includes 17 stations that measure air temperature, vapor pressure, relative
humidity, incoming solar radiation, and wind speed at a 15 min time interval (Figure 1a). Data were not yet
available for 2014, so 2012 and 2013 were used to calculate PET. (The inconsistent time periods for precipi-
tation and PET have little effect on the resulting estimates. If only 2012 and 2013 are used to estimate the
average precipitation, the value changes by only 6%). The ASCE standardized reference ET equation [ASCE-
EWRI, 2005], which is a version of the Penman-Montieth (P-M) equation [Itenfisu et al., 2003], was used to
estimate daily reference ET assuming a short grass reference crop. Daily PET was approximated with refer-
ence ET. The daily PET values were then used to obtain the average PET in each month of the year and the
temporal average PET (mm/d) at each station.

The soil moisture network is comprised of 30 Hydra Probes (Figure 1a), which measure the soil moisture in
the top �5 cm of the soil layer with a measurement error of 60.03 m3/m3 [Seyfried and Murdock, 2004; Sey-
fried et al., 2005]. These observations are assumed to characterize the soil moisture throughout the depth of
the hydrologically active layer, which is estimated to be about 120 cm [Seyfried et al., 2011], because deeper
observations are unavailable. A total of 30 dates were selected for soil moisture downscaling from 2012
through 2015. The dates were selected to be as independent from each other as possible. Thus, they are

Figure 1. (a) Map of the Reynolds Creek watershed topography showing rain gauge, weather station, and soil moisture probe locations, and (b) map of Soil Adjusted Vegetation Index
(SAVI) for the same watershed, which is used as fractional vegetation cover.
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spread over four summers (the maximum allowed by the available observations), and they are always
spaced by at least 8 days. Fall is avoided because the soil moisture is consistently dry in this period. Thus,
including fall dates would add replicas of dry soil moisture patterns and reduce the independence between
the dates. Winter is also excluded to avoid frozen soil. The selected dates capture a wide range of soil mois-
ture conditions. The Hydra Probes record observations every 15 min or every hour, depending on the partic-
ular probe. The available data were used to calculate a daily average soil moisture at each station for each
date of interest.

3.2. Model Inputs and Application
To apply the EMT1VS model, a spatial average soil moisture h is required as input. In this study, the average
of the in situ soil moisture measurements was used. SMAP data could potentially be used but likely includes
more error than the average of the in situ observations. Nonetheless, the average from the local observa-
tions is likely biased to wetter values because most stations occur at higher elevations in the watershed
(Figure 1a).

A DEM is also required to calculate the fine-scale topographic attributes for the EMT1VS model (S, j, A, Ip,
Z, Z#, S#, and R#). A 30 m DEM was obtained from the United States Geological Survey (USGS) National Map
Viewer. It is projected in universal transverse Mercator coordinates (zone 11) using the 1983 North American
Datum and the GRS 1980 ellipsoid. Pits were removed and d-infinity flow directions were determined using
the TauDEM Toolbox [Tarboton, 1997]. The resulting elevation map is shown in Figure 1a.

Fine-scale fractional vegetation cover V was also supplied to the EMT1VS model as a temporally con-
stant variable. Landsat surface reflectance data at a 30 m resolution were obtained using USGS Earth
Explorer. The reflectance data were used to derive the soil adjusted vegetation index (SAVI) [Huete,
1988], and SAVI values were directly used in the EMT1VS model as V . Vegetation indices like SAVI have
been shown to be composite properties of vegetation that include both leaf area and canopy cover
[Glenn et al., 2008], which is similar to the definition of V provided by Ranney et al. [2015]. Among such
indices, SAVI was selected because it has been shown to be a reliable estimate of vegetation cover in
areas with low vegetation density [Purevdorj et al., 1998] such as Reynolds Creek. Only three Landsat
images (5 June 2013, 8 June 2014, and 11 June 2015) during the study period were free from cloud cov-
er and therefore useable, so their SAVI values were averaged. The resulting fractional vegetation cover is
shown in Figure 1b.

The EMT1VS model parameters were considered spatially constant and calibrated. In reality, soil prop-
erties might exhibit elevation dependence due to the elevation dependence of precipitation and PET
over pedologic time scales. The feasible range for each parameter (Table 1) was determined from avail-
able information about the local soil, vegetation, and climatic characteristics [Seyfried et al., 2001]. For
each case described later, the EMT1VS model was applied using two different calibration approaches.
In the first approach, the parameter values were selected to maximize the average Nash-Sutcliffe coeffi-
cient of efficiency (NSCE) [Nash and Sutcliffe, 1970] for all dates in the soil moisture data set, similar to
the procedure used by Ranney et al. [2015]. The calibrated parameter values for this case are shown in
Table 1, but multiple parameter combinations can produce very similar performance. In a second
approach, the available dates were divided into two halves, and the model was calibrated using one
half of the data and validated using the other half of the data. This split-sample procedure was then
repeated when the calibration and validation data sets were switched. Finally, an average performance
measure was calculated for the calibration periods and another average was calculated for the valida-
tion periods.

4. Results

The analysis begins by assessing both the assumptions and the performance of the precipitation downscal-
ing method. Then, the assumptions and performance of the PET downscaling method are evaluated. Finally,
the effects of precipitation and PET variations on soil moisture downscaling are investigated. Unless other-
wise noted, all precipitation and PET values discussed in the results are temporal averages calculated over
the time periods with data (provided in the previous section). For clarity, we usually refer to these quantities
as precipitation and PET and reserve the term average for other types of averages.
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4.1. Evaluation of Precipitation Downscaling
A key assumption in the precipitation downscaling method is that the relationships with topographic attrib-
utes occur at a scale that is coarser than the 30 m DEM. To evaluate this assumption, Z#, S#, and R# were
calculated for neighborhood sizes ranging from 30 m to 12 km. For each neighborhood size, regressions
were performed between the observed precipitation at each station and both Z# and S#cos R#2m

� �
, which

is how the orographic variables appear in the downscaling model. When performing these regressions, m

was selected to maximize each regression’s coefficient of determination r2. The curves in Figure 2 show the
results of this analysis. Lower r2 values
are observed at small scales, but a
noticeable peak occurs for both Z#
and S#cos R#2m

� �
at about 7 km. This

spatial scale is similar to those identi-
fied by other researchers for other
regions [Thornton et al., 1997; Sharples

et al., 2005] and is therefore used in
the remainder of this study. At the
7 km scale, m is 648 from North, indicat-
ing that precipitation is highest on
east-northeast facing slopes. The pre-
vailing wind at Reynolds Creek comes
from the west and southwest [Hanson,
1982], suggesting that precipitation is
higher on the leeward side of the
mountains.

Figure 2 also considers an alternative
method for calculating S# and R#. The
method proposed earlier (called the
direct method) first calculates fine res-
olution maps of slope and aspect from
the fine resolution elevation data and
then averages these attributes within
the neighborhood to obtain Z#, S#,

Table 1. Feasible Ranges for the Parameters Used in the EMT1VS Model Along With the Calibrated Values for Case 1 (the Preexisting
EMT1VS Model), Case 2 (the Model With Precipitation Downscaling Included), and Case 3 (the Model With PET Downscaling Included)

Parameter

Ranges

Case 1 Case 2 Case 3Lower Upper

k 0 0.99 0.63 0.92 0
g 0.01 1 0.01 1 0.63
l 1 3 1 1.56 1.23
br 0.2 5 5 1.38 1.89
ba 0.2 5 0.2 0.76 1.08
u (m3/m3) 0.2 0.7 0.48 0.7 0.7
i 1 500 276 319 500
Ks,v (mm/d) 1 6228 3897 4052 2965
d0 (m) 1.2 1.2 1.2 1.2 1.2
jmin (1/m) 21000 20.064 2889 2296 2391
e 1 3 3 1.86 2.06
cv 1 29.92 9.73 20.11 25.39
ch 6.3 29.92 9.73 1.38 1.89
Ep (mm/d) 3.07 3.07 3.07 3.07 3.07
a 0.05 1.15 1.15 1.13 1.15
x (1/m) 0 0.001 N/A N/A 0.001
s (1/m) 0 0.003 N/A 0.0013 N/A
n 0 2 N/A 1.18 N/A
m (8 from North) 0 360 N/A 149 N/A

Figure 2. Strength of the relationship between temporally averaged precipitation
at the rain gauge locations and the topographic attributes as the size of the
neighborhood used to calculate the attributes changes. The graph also compares
the direct and indirect methods for calculating the orographic orientation
S#cos R#2m

� �
. Z# is the same for both methods.
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and R#. The alternative method (called the indirect method) first averages the elevation values within each
neighborhood to obtain Z# and then uses Z# to calculate S# and R#. Figure 2 shows that the proposed
(direct) method produces much stronger correlations between precipitation and the topographic data than
the alternative (indirect) method. This result might also apply to other precipitation downscaling methods.
One interpretation of this result is that local elevations, aspects, and slopes affect the production of precipi-
tation, but due to horizontal air movement and translation of storms, the attributes are more informative
when averaged over a larger (�7 km) scale.

Next, we evaluate the mathematical structure of the precipitation downscaling method. The method
assumes precipitation is a linear function of Z#. Figure 3a plots the observed precipitation at each station
against Z# for a neighborhood size of 7 km. The precipitation changes by roughly 2.1 mm/d over the range
of orographic elevations represented by the stations (roughly 750 m). Although some curvature is observed
in the graph, the relationship is approximately linear and relatively strong (r2 5 0.76). The downscaling mod-
el also assumes a linear relationship between precipitation and S#cos R#2m

� �
. Figure 3b plots the observed

precipitation at each station against S#cos R#2m
� �

for a neighborhood size of 7 km. High values of S#cos
R#2m
� �

represent locations that have a strong slope in an east-northeast direction. Such stations have a
precipitation of about 2.2 mm/d, but scatter is observed. Only one station has a slope in the opposite direc-
tion (a negative value of S#cos R#2m

� �
). Its precipitation is approximately 0.6 mm/d. The relationship is

approximately linear, and r2 5 0.63. Finally, the downscaling model assumes that the dependence on eleva-
tion is affected by topographic orientation (and the dependence on orientation is affected by elevation).

Figure 3. Relationships between temporally averaged precipitation at the rain gauge locations and (a) orographic elevation Z#, (b) oro-
graphic orientation S#cos R#2m

� �
, (c) Z# (when locations are grouped using ranges of S#cos R#2m

� �
), and (d) S#cos R#2m

� �
(when loca-

tions are grouped using ranges of Z#). All topographic attributes are calculated using the direct method and a 7 km neighborhood.
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Figure 3c plots the relationship between the observed precipitation and Z# when the data are divided into
three ranges of S#cos R#2m

� �
. The results show that the slope of the relationship with Z# depends on the

value of S#cos R#2m
� �

. Furthermore, the dependence on S#cos R#2m
� �

explains the small curvature that
was observed in Figure 3a. Similarly, Figure 3d plots the relationship between precipitation and S#cos

R#2m
� �

when the data are divided into ranges of Z#. Consistent with the model formulation, the slope of
the relationship with S#cos R#2m

� �
depends on the value of Z#.

The precipitation downscaling method also assumes that the slopes of the relationships with Z# and S#cos
R#2m
� �

are independent of the spatial average precipitation. This assumption is evaluated by calculating
the slopes of those relationships (i.e., n and s) for each month of the year and plotting those slopes as a
function of the monthly average precipitation. For the data to be consistent with the model structure, n and
s should be the same for each month. Figure 4a shows that the monthly values of n and s are quite variable
(because the spatial patterns of individual storms vary), and the average becomes more sensitive to those
individual patterns as the time period over which the average is calculated decreases. Weak increases in n
and s with precipitation seem to occur. Figure 4b examines an alternative approach where the relationship
slopes are assumed to depend linearly on the spatial average precipitation. To be consistent with this alter-
native approach, the vertical coordinates in Figure 4b should be constant. Comparing Figures 4a and 4b, it
is clear that the proposed model is superior to this alternative approach.

The overall performance of the proposed precipitation downscaling method is evaluated by comparing the
downscaled (fine resolution) precipitation estimates with the values from the rain gauges. The input for the
precipitation downscaling method is the space-time average precipitation rate for the watershed (1.46 mm/
d), which was calculated from the rain gauges. The parameters s, n, and m were calibrated to maximize the
NSCE of the precipitation estimates compared with the observed precipitation values. Figure 5a plots
the downscaled precipitation against the observations at the stations. The downscaling method captures
the temporal average precipitation at the gauges very well (NSCE 5 0.90). The ability of the method to cap-
ture individual storm patterns was not examined because the EMT1VS model does not consider temporal
variability aside from h. However, it is highly unlikely that the precipitation downscaling method can cap-
ture the spatial distribution of individual storms due to the wide variation in the spatial patterns of different
storms.

To further evaluate the performance of the precipitation downscaling method, its results are compared to a
map of average precipitation that was independently developed for the Reynolds Creek watershed by the
United Sates Department of Agriculture-Agricultural Research Service (USDA-ARS). This data set is available
from scholarworks.boisestate.edu/reynoldscreek/1/. For each time increment from 2012 through 2014, they
used a detrended kriging procedure [Garen et al., 1994] to estimate the precipitation pattern across the
watershed. The method accounts for the nonstationarity due to orography with a linear relationship
between precipitation and local elevation. The average precipitation map was then calculated from these
kriged maps. For comparison, the precipitation downscaling method was applied to the entire watershed
using the space-time average precipitation from the USDA-ARS map (1.11 mm/d) and by recalibrating the

Figure 4. (a) Monthly n and s values and (b) monthly n and s values divided by the monthly average precipitation plotted against monthly
average precipitation.
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parameters. Figure 5b compares the precipitation values from the USDA-ARS and downscaling methods.
The downscaling method reproduces the USDA-ARS precipitation values very well (NSCE 5 0.92).

Figure 6 shows the USDA-ARS precipitation map, the downscaled precipitation map, and the difference
between the two maps. Both precipitation maps exhibit smaller precipitation values at the lower elevations
(in the northern part of the watershed). However, the USDA-ARS map exhibits much more local variability in
the precipitation because it uses fine resolution elevations in the kriging method. The downscaled map
exhibits a much smoother pattern because it uses the topographic attributes from the 7 km scale. Despite
their differences in appearance, the precipitation values are quite similar as shown in Figure 5b.

4.2. Evaluation of PET Downscaling
The PET downscaling method assumes that PET depends linearly on surface air temperature and that
surface air temperature depends linearly on elevation. Together, these two assumptions imply that PET
depends linearly on elevation. Figure 7 evaluates these assumptions using the P-M PET values calculated at
each weather station. Figure 7a shows that an approximately linear relationship occurs between the tempo-
ral average PET and air temperature. However, much scatter is observed (r2 5 0.38), which indicates that
other variables substantially affect the PET at each station. Figure 7b shows that a strong linear relationship
occurs between average air temperature and elevation at the stations (r2 5 0.89). Over a range of about
970 m, the temperature changes by about 4.38C. The resulting relationship between PET and elevation is
shown in Figure 7c. Here again, substantial scatter is seen (r2 5 0.32), but no obvious nonlinearity is
visible. The scatter is not surprising because elevation alone is not expected to fully explain the spatial
variation in PET. Over the range of elevations represented by the stations (roughly 970 m), the PET
changes by about 1.4 mm/d. This change is about two thirds of the variation in precipitation of a similar
range of elevation.

A key property of the PET downscaling method is that the slope of the relationship between Z and Ep

depends both on x and the spatial average PET E p (see first term in parentheses in equation (16)). This
assumption is evaluated by calculating the average PET at each station for each month of the year and then
performing linear regressions between those monthly average PET values and elevation. For the data to be
consistent with the model structure, the regression slopes should depend on the spatial average PET
(i.e., E p) for each month. Figure 8a plots the regression slopes as a function of E p, and a clear increase is
observed as E p increases. These results can also be visualized by dividing each regression slope by E p to cal-
culate x (Figure 8b). The results show that x is relatively stable (near 0.0003 1/m) as E p changes, which sup-
ports the model structure. Little scatter is observed when E p is large, which suggests the relationship
between PET and elevation is stronger and more stable during the summer months. The r2 values also
improve when E p is large.
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Figure 5. (a) Relationship between observed temporally averaged precipitation at rain gauge locations and EMT1VS downscaled average
precipitation at the same locations. (b) Relationship between kriged average precipitation and downscaled precipitation for the entire
watershed (using a density scatterplot where the density represents the number of data points at a given location in the plot).
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To quantify the performance of the PET downscaling method, the downscaled (fine resolution) PET values
are compared to the P-M PET values at the weather stations. The input to the downscaling method (E p) is
the spatial average P-M PET from the stations (2.8 mm/d). The parameter x was calibrated to maximize the
NSCE of the estimated PET values at the weather stations. The results (Figure 9a) show that the downscaling
method only weakly captures the spatial variability in the P-M PET values (NSCE 5 0.32). This result suggests
that the downscaling method only gives an approximate estimate of local PET and has potential to be
improved in the future by adding supplemental data. Likely, the weak relationship between PET and

Figure 6. Maps of (a) Kriged temporally averaged precipitation, (b) average precipitation from the downscaling method, and (c) Kriged precipitation minus downscaled precipitation.
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Figure 7. For weather station locations, relationships between (a) temporally averaged Penman-Monteith (P-M) PET and average air temperature, (b) average air temperature and eleva-
tion, and (c) average P-M PET and elevation.
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temperature that was observed earlier produces much of the scatter seen here. For example, variations in
temperature do not capture spatial variations in wind speed.

Another potential hindrance in PET downscaling performance is the abandonment of the P-M equation for
calculating local PET. The P-M equation is used to calculate the spatial average PET E p, which is supplied to
the downscaling method, but P-M is not otherwise used. To consider this possibility, a PET map for the
watershed was generated using the P-M equation. To calculate P-M PET at all locations, the weather station
data were extrapolated throughout the watershed. The extrapolation was performed using a regression
approach. All inputs for the P-M equation (temperature, incoming solar radiation, wind speed, relative
humidity, and cloudiness) were plotted as functions of elevation to determine the variables that could be
considered spatially constant and those that should be estimated using elevation. Temperature and relative
humidity exhibit clear relationships with elevation (not shown here) and are allowed to vary each day. The
other variables are approximately constant between locations (not shown), so spatial averages are used for
each day. Using this approach, daily P-M PET maps were produced and used to calculate the temporal aver-
age P-M PET map. The P-M PET map was then compared to the downscaled (fine resolution) PET map. The
downscaled PET map uses the spatial average P-M PET as input, and x was calibrated to maximize the
NSCE of the downscaled PET pattern (treating the P-M map as the observations). Figure 9b compares the

Figure 8. (a) Regression slopes of the relationship between monthly average Penman-Monteith (P-M) PET and elevation plotted against
monthly average P-M PET, and (b) monthly x values (parameter that partly controls the dependence of PET on elevation) plotted against
monthly average P-M PET.
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Figure 9. (a) Comparison of average Penman-Monteith (P-M) PET from weather station data and downscaled PET at the weather stations,
and (b) comparison of regression-based P-M PET and downscaled PET for the entire watershed (using a density scatterplot where the den-
sity represents the number of data points at a given location in the plot).
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PET values from the two methods at each location in the watershed. The two procedures provide very simi-
lar estimates of PET even though the downscaling method does not use the P-M equation at every location.
The slight curvature of the data in the plot likely occurs because the downscaling method uses a linear
dependence on temperature instead of the P-M equation. Figure 10 shows the two PET maps along with
their difference. The largest differences occur at locations with extreme values of elevation. However, the
maximum difference is only 3–5% of the estimated PET, which is why the two PET maps appear almost
identical.

4.3. Effects of Precipitation and PET on Soil Moisture Downscaling
To investigate the impact that the precipitation and PET patterns have on soil moisture downscaling, three
cases are compared. Case 1 uses the original EMT1VS model, so the only variables that produce spatial var-
iations are V , S, j, Ip, and A. Case 2 adds the precipitation downscaling method to the EMT1VS model. Thus,
additional spatial variation can be produced by the orographic variables Z#, S#, and R#. Case 3 adds the PET
downscaling method instead of the precipitation downscaling method. Thus, it is the same as the first case,
but spatial variations can also be introduced by Z.

A typical soil moisture pattern for Case 1 is shown in Figure 11a. This date (2 June 2012) has intermediate
moisture among those considered. Overall, the soil moisture pattern produces wetter conditions at high ele-
vations even though elevation does not appear as a variable in the model. In this scenario, the calibrated
parameters produce much of the spatial variation using vegetation cover. The vegetation shades the
ground surface, reducing soil evaporation and increasing soil moisture in the model. Vegetation cover tends
to be thicker at high elevations in the watershed (Figure 1b). However, in order for the EMT1VS model to
capture the wet conditions at high elevations, this case over-estimates the dependence on vegetation. This
over-dependence can be seen in the unrealistically wet conditions for the agricultural fields in the northern
portion of the watershed. No soil moisture observations are available at these fields to constrain the model

Figure 10. Maps of (a) average PET from the regression-based Penman-Monteith (P-M) method, (b) average PET from downscaling method, and (c) P-M PET minus downscaled PET.
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behavior. Varying vegetation cover on opposing hillslopes throughout the watershed (Figure 1b) also allows
the soil moisture pattern in Case 1 to show some hillslope (aspect) dependence.

Figure 11b shows the soil moisture pattern on the same date for Case 2 (precipitation downscaling is includ-
ed). The soil moisture pattern exhibits a more obvious dependence on elevation than Case 1 with low eleva-
tion points exhibiting much less moisture than high elevation points. Additionally, the western side of the
watershed is wetter than the eastern side due to the orographic orientation that is used in the model. The
soil moisture pattern also produces saturated conditions at stream locations (even though soil moisture
observations are not available at or near the streams). This feature is produced by the lateral flow term in
the EMT1VS model. Unlike Case 1, thicker vegetation cover produces drier conditions in Case 2. The cali-
brated parameters suggest that interception and root water uptake reduce the soil moisture more than
shading increases it. This behavior might be unrealistic because previous studies in semiarid watersheds
have shown that vegetation cover is associated with greater soil moisture at shallow depths [D’Odorico
et al., 2007; Traff et al., 2015]. Furthermore, this type of vegetation dependence predicts very dry conditions
for the irrigated agricultural fields, which is also unlikely. This case also exhibits very strong aspect depen-
dence, which is produced by spatial variations in insolation instead of vegetation cover.

Figure 11c shows the soil moisture pattern on the same date for Case 3 (PET downscaling is used instead of
precipitation downscaling). Clear elevation dependence is again observed in the soil moisture pattern, and
saturated conditions are again produced for stream locations. Here the dependence on vegetation is much
weaker than Case 1, but wetter conditions are again produced for locations with thicker vegetation cover.
The agricultural fields are wetter than nearby locations, but the wettest locations occur at high elevations. A
moderate dependence on aspect is also produced for this case. The parameters indicate that a combination
of lower PSRI values and thicker vegetation cover produces wetter conditions on north facing hillslopes.

Figure 11. Downscaled soil moisture maps for 02 June 2012 from the Equilibrium Moisture from Topography, Vegetation, and Soil (EMT1VS) model when (a) the pre-existing EMT1VS
model is used, (b) precipitation downscaling is included, and (c) PET downscaling is included.
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To evaluate the downscaling performance for all dates in the data set, the estimated soil moisture values
are plotted against the in situ observations in Figure 12. For all three cases, the downscaled patterns typical-
ly underestimate the moisture at the wettest locations and overestimate the moisture at the drier locations
(i.e., the variance in the downscaled soil moisture patterns is less than that of the observed soil moisture
pattern). This behavior partly occurs because the downscaled pattern is calibrated to minimize the error in
its soil moisture estimates. This approach discourages extreme estimates of soil moisture because they pro-
duce large errors if incorrect. Another reason for this behavior is the bias in the provided average soil mois-
ture h. Among the 30 soil moisture probes in the watershed, only 7 are located below the average
watershed elevation. Thus, the average soil moisture from these probes is likely greater than the actual
average for the watershed. The EMT1VS model always maintains the average it is provided, so a biased
average causes the model to reduce the variance in its estimates to help it achieve higher NSCE values.

Comparing Figures 12a and 12b, the estimates of soil moisture appear to improve when precipitation
downscaling is added to the model. The estimates appear to further improve when PET downscaling is
used instead of precipitation downscaling (Figure 12c). Most notably, the wettest locations appear to be
captured best when PET downscaling is used (Case 3). This visual interpretation is confirmed by metrics of
model performance. If the NSCE is calculated for each downscaled pattern in the data set and then aver-
aged, it is 0.19 for Case 1, which is comparable to previous applications of the EMT1VS model [Ranney
et al., 2015]. If the NSCE is calculated for the entire space-time data set together, it is 0.33. When the precipi-
tation downscaling method is included in Case 2, the average spatial NSCE for all dates increases to 0.24,
and the space-time NSCE becomes 0.36. Comparing Case 2 to Case 1, the downscaling performance
improves for 23 out of 30 dates. For Case 3, when PET downscaling is used instead of precipitation down-
scaling, the average spatial NSCE increases to 0.29, and the space-time NSCE becomes 0.41. Comparing
Case 3 to Case 1, the performance improves for 27 out of 30 dates. Similar improvements are also observed
if other measures of error are used (e.g., the root mean squared error). When the dates were split into cali-
bration and validation samples, the results again suggest that precipitation and PET downscaling improve
the estimation of soil moisture, with the PET downscaling method providing more improvement than the
precipitation downscaling method. The average spatial calibration and validation NSCEs for Case 1 are 0.22
and 0.05, respectively. The average spatial NSCE values increase to 0.27 and 0.12 when the precipitation
downscaling method is included for Case 2. For Case 3, the NSCE values increase to 0.32 and 0.20,
respectively.

These results suggest that the precipitation and PET patterns affect the fine resolution patterns of soil mois-
ture. Overall, the addition of PET downscaling improves the soil moisture estimates more than the addition
of precipitation downscaling. This relative advantage of PET downscaling is surprising because the spatial
variation in precipitation over the watershed is about 50% larger than the variation in PET. Furthermore, the
spatial variation in average precipitation is better captured by the downscaling method than the spatial var-
iation in average PET. However, the spatial patterns of individual precipitation events are expected to be
highly variable. This variability is expected to be especially pronounced for the convective rain storms in
May and June when the soil moisture patterns were downscaled, and Garen et al. [1994] found that the
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Figure 12. Comparisons of observed soil moisture and Equilibrium Moisture from Topography, Vegetation, and Soil (EMT1VS) model soil moisture estimates for all dates when: (a) the
preexisting EMT1VS model is used, (b) precipitation downscaling is included, (c) PET downscaling is included. The NSCEs shown are the space-time values.
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relationship between precipitation and elevation at the Reynolds Creek Watershed is weaker in the summer
months. Also, Figure 4a illustrated that the precipitation downscaling parameters n and s can vary signifi-
cantly from month to month. Thus, even though the precipitation downscaling method captures the aver-
age precipitation pattern in the watershed, this average pattern is weakly related to the soil moisture
patterns. In contrast, the spatial pattern of PET is expected to be more persistent in time. For example, Fig-
ure 8b showed that x is stable in summer months when PET is large, suggesting a strong relationship with
elevation for this period. Thus, the PET downscaling method is less effective at capturing the average PET
pattern, but it still provides greater benefit in downscaling soil moisture values.

Although not shown here, EMT1VS downscaling was performed when both the precipitation and PET
downscaling methods were implemented. The results for this case are essentially unchanged from Case 3
when only PET downscaling is used. This behavior indicates that much of the soil moisture variability that
can be captured by precipitation downscaling is already captured by PET downscaling. Both downscaling
methods primarily introduce elevation dependence into the soil moisture patterns, so this overlap in the
variance explained is not unexpected.

5. Conclusions

This study aimed to assess the impacts of variations in precipitation and PET on soil moisture downscaling
for regions with large topographic relief. It introduced new downscaling methods for average precipitation
and PET and implemented the new downscaling methods in the EMT1VS model. The following conclusions
can be made:

1. The average spatial pattern of precipitation in Reynolds Creek is well estimated by the precipitation
downscaling method. The downscaled precipitation values are similar to rain gauge values and the
downscaled pattern is similar to the average pattern from detrended kriging of rain gauge data. The spa-
tial pattern of precipitation depends on elevation and topographic orientation. The dependence on
these topographic attributes is strongest when they are calculated at about a 7 km (orographic) scale,
which is similar to the spatial scale found for other regions in previous studies. The precipitation has a lin-
ear relationship with elevation, but the slope of that relationship depends on the topographic orienta-
tion. Similarly, the precipitation has a linear relationship with topographic orientation, but the slope of
that relationship depends on elevation.

2. The average spatial pattern of PET in Reynolds Creek can be approximated using the proposed PET
downscaling method, but the PET downscaling method is less accurate than the precipitation downscal-
ing method. When compared to P-M PET values from weather station data, the PET downscaling method
only captures the general trend in PET. However, when the downscaled pattern is compared to a P-M
PET pattern that is extrapolated from the weather station data, the two methods provide almost identical
results. This similarity suggests that the full P-M equation is not needed for PET downscaling. At Reynolds
Creek, the PET has a weak linear relationship with average air temperature, and average air temperature
has a strong linear relationship with elevation. Together, these relationships produce a weak linear rela-
tionship between the average PET pattern and elevation.

3. Including orographic precipitation in the soil moisture downscaling method improves the estimates of
surface soil moisture for Reynolds Creek. The average spatial NSCE of the soil moisture estimates
increases from 0.19 to 0.24 when the precipitation downscaling is added to the model. Reynolds Creek
has large topographic relief, and the precipitation varies substantially with elevation. The downscaling
model is relatively successful at capturing the spatial pattern in average precipitation. However, precipi-
tation downscaling provides a relatively small improvement in the soil moisture estimates likely because
individual storm patterns differ, particularly in the summer when the soil moisture was downscaled.

4. Including elevation-dependent PET in the soil moisture downscaling method also improves the estimates
of surface soil moisture for Reynolds Creek. When PET downscaling is added to the EMT1VS model, the
average spatial NSCE increases from 0.19 to 0.29. For this watershed, PET downscaling provides a larger
improvement in the soil moisture estimates than precipitation downscaling. The average PET varies less
with elevation than the average precipitation, and the PET downscaling method is less successful than
the precipitation downscaling method. However, the PET pattern is more persistent in time than the pre-
cipitation pattern, particularly in summer, so it has a stronger relationship with the soil moisture patterns.
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5. When both precipitation and PET downscaling are used, the soil moisture results are essentially the same
as when only PET downscaling is used. However, including precipitation downscaling requires three
more parameters than using PET downscaling alone. Thus, using only PET downscaling might be appro-
priate for some watersheds where limited data are available to calibrate the model parameters.

Overall, this study shows that elevation should be included as a relevant topographic attribute when down-
scaling soil moisture in regions with large relief. The dependence on elevation has been neglected in sever-
al previous topographic downscaling studies because they focused on catchments with low relief. This
study also identifies two physical mechanisms (precipitation and PET) through which elevation can affect
soil moisture patterns, and it provides simple downscaling methods for precipitation and PET, which intro-
duce elevation into the soil moisture downscaling model. Those downscaling methods also have potential
applications beyond soil moisture downscaling.

Future research should consider additional application regions. The relative roles of precipitation and PET in
determining the soil moisture patterns may change for more humid regions where average precipitation
exceeds average PET. In addition, regions with more persistent orographic precipitation effects may demon-
strate a stronger dependence than what was observed here. Furthermore, this study focuses only on the
average precipitation and PET patterns because the EMT1VS includes an equilibrium assumption. However,
the results suggest that orographic effects might be seasonal. If possible, the performance of the EMT1VS
model should be evaluated when temporal variability is included in more inputs than the spatial average
soil moisture. Finally, the propagation of errors in the supplied soil moisture values to the fine-scale soil
moisture patterns should also be examined.
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